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Abstract   Although  photothermal  therapy  (PTT)  has  been  developed  for  fighting  cancers,  the  degradative,  toxic,  and  metabolic  nature  of

photothermal conversion materials (PCMs) has prevented them from being clinically implemented. Taking advantage of the surface modification

strategy of mussel-inspired dopamine chemistry and its excellent photothermal conversion effect, polydopamine (Pdop) represents a versatile

PTT platform, providing strategies and methods for the construction of novel Pdop-functionalized PCMs. Thanks to its adhesion and secondary

reactivity, Pdop can be deposited on virtually all substrates to improve their bioavailability and biocompatibility. Pdop-based PCMs could not be

only functionalized with small biomolecules via chemical bonds and/or noncovalent force but also modified with functional polymers via either

the “grafting to” or “grafting from” method. This review highlights the synthetic methods, therapeutic strategies, and designs of PCMs based on

Pdop in recent years to explore its scope and limitations.
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INTRODUCTION

Phototherapy,  a  treatment  that  involves  exposing  patients  to
light,  has  been  used  for  thousands  of  years  to  help  relieve  a
variety of conditions, such as psoriasis, vitiligo, and skin cancer.[1]

The development of the laser has revolutionized phototherapy
by providing a light source that emits photons in a coherent and
narrow  beam.[2] Photothermal  therapy  (PTT)  that  employs
photothermal  conversion  materials  (PCMs)  to  amplify  the
therapeutic  effectiveness  of  light  radiation  has  been
developed.[3−6] PTT  is  an  effective,  selective,  and  nontoxic
method  that  often  reverses  resistance,  making  it  a
complementary  and  alternative  treatment.[7] In  the  past  few
decades,  with  the  development  of  nanotechnology,  PTT  has
attracted  tremendous  attentions  (Fig.  1).  Numerous  inorganic
and organic PCMs have demonstrated great potential for PTT of
tumors and diseased tissue, producing positive results in both in
vitro and in  vivo studies.[8,9] Many  reviews  focused  on  the
development  of  PTT  and  treatment  protocols  based  on
traditional  or  innovative  PCMs,  providing  intuitive,  vivid,  and
specific  insights  to  the  readers.[7,10−12] Noble  and  transition
metal  nanoparticles,[11,13] carbon  nanomaterials,[14,15] synthetic

colorants,[9,16] and conjugated polymers[17,18] are widely used in

PTT  due  to  their  efficient  photothermal  conversion  effect  (Fig.

2).  However,  most  of  these  agents  have not  yet  been clinically

implemented,  due  to  concerns  about  potential  long-term  side

effects.[19,20] The  development  of  novel  PCMs  that  consist  of

biocompounds  derived  from  living  organisms  would  be

advantageous for in vivo applications, since it would obviate the
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Fig.  1    Data  statistics  of  publications  with  the  topic  of
“photothermal  therapy”  (gray)  and  “photothermal  therapy  and
polydopamine” (red)  based on Web of  Science searching conducted
on November 11, 2022.
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deleterious  effects  associated  with  the  long-term  retention  of
foreign  substances  in  patients,  and  these  agents  could  be
metabolized,  achieving  biodegradation.[21,22] Melanin,  a
biopolymer, has been found in a variety of living organisms with
good photothermal conversion efficiency, providing protection
against  ultraviolet  radiation  and  absorbing  light  in  the  near-
infrared range.[23] Dopamine, a precursor for melanin synthesis,
has been used to generate biomimic nanoparticles with similar
properties. Taking advantages of surface modification strategies
of  dopamine  chemistry  and  its  excellent  photothermal
conversion  effect,  polydopamine  (Pdop)  represents  a  versatile
photothermal  therapy  platform,  providing  strategies  and
methods  for  the  construction  of  novel  polymer-functionalized
PCMs. This review highlights the synthetic methods, therapeutic
strategies,  and designs of PCMs based on Pdop in recent years
to explore its scope and limitations.

PDOP MODIFICATION STRATEGIES

Pdop  became  a  popular  adhesive  polymer  that  can  modify
surfaces made of virtually all material chemistries, leading to its
wide application in biological and biomedical fields.[24−26] Under
alkaline  and  aerobic  conditions,  dopamine  will  self-polymerize
to  form  Pdop  nanoparticles[27,28] or  a  coating.[29,30] It  is
composed  of  dihydroxyindole,  indoledione,  and  dopamine
units,  which  are  assumed  to  be  covalently  linked  (Fig.  3).[31]

Adhesion  is  one  of  the  two  most  important  characteristics  of
Pdop.  When  the  surface  has  abundant  amino,  thiols,  or
sulfhydryl  groups,  dopamine  undergoes  Michael  addition  or
Schiff  base  reaction  to  bind  firmly  to  the  substrate  under
oxidizing  conditions.[32,33] Besides  these,  metal  complexation
plays  a  crucial  role  in  Pdop  adhesion  on  metal  or  metal  oxide
surfaces.[34] In general, Pdop can be coated on most surfaces of
materials  through  noncovalent  interaction,  including  van  der
Waals  forces,  metal  complexation,  hydrogen  bonding,
electrostatic  forces,  hydrophobic  forces,  and  cation-π and π-π
interactions.

The presence of amino and catechol groups on Pdop could
be  used  as  anchor  points  to  further  functionalize  the  Pdop-
based  materials,  giving  it  secondary  reactivity.  To  stabilize
and  enhance  bioavailability  and  biocompatibility,  Pdop-con-
taining substrates could not be only functionalized with small
biomolecules via chemical reaction and/or noncovalent force
but  also  decorated  with  functional  polymers via either  the

“grafting to” or “grafting from” method (Fig. 4). Consequently,
Pdop-based  materials  offer  a  versatile  platform  for  cancer
therapeutics that can be combined with other drugs or detec-
tion methods to improve efficacy.

PDOP-BASED PCMS FOR ENHANCED CANCER
THERAPY

In  2013,  Liu et  al. prepared  dopamine-melanin  colloidal
nanospheres  that  exhibited  robust  biocompatibility  and
biodegradability.[39] These  Pdop-based  nanoparticles  offered  a
photothermal  conversion  efficiency  of  40%,  much  higher  than
those of previously reported PCMs. Following the publication of
this  landmark  research,  Pdop-based  PCMs  have  emerged  in
great numbers (Fig. 1). The properties of Pdop nanoparticles can
be  further  enhanced  by  adding  other  functional  materials.  For
example,  by  decorating  Nd3+-sensitized  upconversion
nanoparticles  onto  the  surface  of  Pdop,  a  multifunctional
core/satellite  nanotheranostic  was  developed  for in  vivo
imaging  guidance  PTT.[40] The  Pdop  core  provides  a  high
photothermal conversion efficiency and robust biocompatibility
due  to  its  natural  features.  Due  to  the  its  high  adhesion,  Pdop
could  be  deposited  on  virtually  all  materials,  endowing  them
with  PTT  or  enhancing  their  PTT.  Li  and  colleagues  created
Pdop-coated  gold  nanostars  (Au-PEI@Pdop)  to  improve
computed  tomography  (CT)  imaging  and  cancerous  tumor
destruction through PTT.[41] The nanostars were able to convert
the  NIR  laser  into  heat  and  had  strong  X-ray  attenuation
properties,  allowing  them  to  be  used  as  a  theranostic
nanoplatform for efficient CT imaging and enhanced PTT in vitro
and  in  the  xenografted  tumor  model.  Mn-complex  modified
NaDyF4:Yb@NaLuF4:Yb,Er@Pdop  nanocomposites  were  syn-
thesized  (Fig.  5),  which  is  based  on  the  fact  that  Yb3+ and  Er3+

induce  upconversion  luminescence  imaging,  Dy3+ and  Mn2+

interferes with T2 and T1 in MRI,  and Pdop strongly absorbs in
the NIR region for PTT.[42]

Pdop-based PCMs for Synergistic Treatment
Pdop has a strong affinity for  biomolecules due to its  negative
charge, abundance of π electrons, and functional groups (amine
and  hydroxyl),  making  it  a  desirable  drug  delivery  system  for
combining  other  therapeutics  to  integrate  materials  for
diagnosis  and  treatment.  Pdop-coated  selenide  molybdenum
(MoSe2@Pdop),  a photothermal nanocarrier,  was developed by

 
Fig. 2    Classification of PCMs. (Reproduced with permission from Ref. [5]; Copyright (2012) The Royal Society of Chemistry).
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Wang et  al. for  loading  anticancer  drug  doxorubicin  (Dox).[43]

The Pdop layer can not only enhance the photothermal effect of
MoSe2 nanosheets,  but  also  decrease  their  cytotoxicity  and
improve  Dox  loading.  A  nanoplatform  (NRGO-GNS@DOX)  was
developed  by  Wang et  al. that  integrates  Pdop-functionalized
nanosized  reduced  graphene  oxide  (NRGO),  gold  nanostars
(GNS)  and  Dox  to  be  used  for  the  combinational  treatment  of
metastatic  breast  cancer  (Fig.  6).[44] Upon  NIR  laser  irradiation,
the  nanocomposites  exhibited  significant  cytotoxicity  in  4T1
breast  cancer  cells  due  to  the  hyperthermia  elicited  by  the
NRGO-GNS  and  the  Dox-induced  cytotoxicity. In  situ one-step
reduction-encapsulated  method  has  been  reported  to
synthesize  a  cancer  theranostic  agent  as  multicore-shell
polydopamine-coated  Ag  nanoparticles,  integrating  amplified
photoacoustic  imaging,  enhanced  photothermal  therapy,  and
photothermal  promoted  dual  tumor  microenvironment-
coactivated chemodynamic therapy.[45] The 4T1 cell membrane
loaded  with  cucurbitacin  B  was  used  to  coat  polydopamine
(PDA)  nanoparticles,  resulting  in  a  biomimetic  nanoplatform
with  increased  photothermal  conversion  efficiency  and
photostability.[46] A  nanoplatform  that  combines  Dox,

imiquimod  (R837),  and  folate  onto  Pdop  to  develop
multifunctional  nanoparticles  is  used  as  a  combined
photothermal  therapy,  chemotherapy,  and  immunotherapy  in
order  to  enhance  cancer  therapeutic  effects.[47] By  using  these
nanoparticles for NIR light-induced thermochemotherapy, local
tumors  can  be  destroyed  while  also  elicit  a  systemic  immune
response  that  protects  against  tumor  recurrence.  Cisplatin-
loaded  Pdop  nanoparticles  have  been  fabricated  through  the
supramolecular  interaction  of β-cyclodextrins  with  adamantyl
groups (Fig. 7).[48] These nanoparticles demonstrated the ability
to  generate  photoacoustic  images,  as  well  as  to  facilitate
imaging-guided  photothermal  therapy,  thus  providing
inspiration  for  the  development  of  combinatorial  nano-
therapeutics.  By  functionalizing  spherical  zeolitic  imidazolate
framework-8  (ZIF-8)  with  Pdop,  Janus  nanoparticles  with  a
hollow  structure  can  be  achieved  using  a  mild  synthesis
strategy.[49] ZIF-8 domains with internal cavities can be used to
store  either  hydrophobic  or  hydrophilic  drugs.  These
nanoparticles,  resulting  from  the  combination  of  pH-sensitive
ZIF-8  and  the  strong  NIR  absorption  of  Pdop,  exhibited  both
photothermal  conversion capacity and pH/NIR dual-responsive

A

B

 
Fig. 3    (A) Unifying tailoring strategy for Pdop and eumelanin synthesis (Reproduced with permission from Ref. [26]; Copyright (2014)
American  Chemical  Society);  (B)  Digital  photographs  of  nascent  substrates  (up),  PDA-coated  substrates  (bottom).  PANUM:
polyacrylonitrile  ultrafiltration  membranes;  PESUM:  polyethersulfone  ultrafiltration  membranes;  PTFEMM:  polytetra-fluoroethylene
microfiltration  membranes;  and  PPMM:  polypropylene  microfiltration  membranes.  (Reproduced  with  permission  from  Ref.  [35];
Copyright (2016) Wiley-VCH).
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drug  release  behavior,  making  them  promising  platforms  for
cancer treatment through collaborative photothermal and dual-
drug chemical therapy. Mesoporous silica nanoparticles (MSNs)
integrated  with  the  photothermal  agent  Pdop,  the  model
antigen  ovalbumin  and  the  antigen  release  promoter
ammonium  bicarbonate  have  been  developed  as  the
nanotherapeutic  nanoplatform  for  melanoma  PTT-
immunotherapy.[50] The  formulated  nanovaccine  exhibits
excellent  photothermal  properties  and  effectively  eliminates
primary  tumors.  Cu-doped  Pdop  nanoparticles  have  been
synthesized  and  embedded  into  microneedles  for  use  in
photothermal  and  chemodynamic  synergistic  therapy  against
skin  melanoma.[51] This  multimodal  tumor therapeutic  strategy

uses the high photothermal effect (50.40%) from NIR irradiation
to convert it into heat and the good Fenton-like catalytic activity
of copper ions to produce toxic free hydroxyl groups, leading to
the  generation  of  a  minimally  invasive  synergistic  therapy.  A
multifunctional  nanobeacon  with  a  scout  function  for  HSP90
mRNA  fluorescence  detection  and  NIR  triggered  drug  release
has  been  prepared  for  chemo-photothermal  therapy.[52] By
combining  NIR  with  fluorescence  imaging,  it  is  possible  to
spatiotemporally  release  doxorubicin via the  photothermal
effect,  potentially  allowing  for  combined  chemotherapy  and
photothermal  treatment.  A  nanotherapeutic  agent  composed
of  a  ZnO  nanoparticle  core,  an  interlayer  of  photosensitizer
chlorin  e6  (Ce6),  and  a  Pdop  outer  layer  was  constructed  by

A

B C

 
Fig. 4    Three methods of post-modifying Pdop materials with polymers: (A) grafting to (Reproduced with permission from Ref. [36]; Copyright
(2018) American Chemical Society), (B) grafting from with ATRP (Reproduced with permission from Ref. [37]; Copyright (2013) Wiley-VCH), and (C)
grafting from with UV-induced polymerization (Reproduced with permission from Ref. [38]; Copyright (2015) The Royal Society of Chemistry).

 
Fig. 5    Schematic illustration of synthesis of NaDyF4:Yb (Dy), NaDyF4:Yb@NaLuF4:Yb,Er (Dy@Lu), NaDyF4:Yb@NaLuF4:Yb,Er@PDA (Dy@Lu@PDA),
and  Mn  complex-modified  NaDyF4:Yb@NaLuF4:Yb,Er@PDA  (Dy@Lu@PDA–Mn)  for  T1-,  T2-weighted  MRI,  upconversion  luminescence  imaging-
guided photothermal therapy. (Reproduced with permission from Ref. [42]; Copyright (2016) The Royal Society of Chemistry).
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combining  PDT  and  PTT.[53] The  as-prepared  nanoparticles
showed  efficient  generation  of  singlet  oxygen  and  excellent
photothermal conversion efficiency because of the presence of
Ce6 and Pdop.

By using a template and porogen, the morphology of Pdop
nanoparticles  can  be  accurately  controlled  to  produce
solid,[28,54,55] mesoporous,[56] and  hollow[57,58] structures  (Fig.
8). Due to its unique hollow and porous structure, a high mass
loading  of  biomolecules  can  be  achieved,  and  the  PCMs
demonstrated remarkably  high photothermal  conversion ca-
pacitances.  Hollow  Pdop  have  been  constructed  by  an  im-
proved surfactant-DMDES emulsion template method.[59] Due
to their hollow structure and the good photothermal conver-
sion  efficiency,  the  Pdop  capsules  showed  excellent  pho-
toacoustic  imaging  (PAI)  ability  and  high  Dox  loading  capa-
city via electrostatic interaction and π-π stacking. The Dox re-
lease was pH and NIR laser responsive to minimize the side ef-
fect, proving that it could efficiently ablate the tumor in vitro
and in  vivo experiments  though chemo-photothermal  syner-
gistic  therapy.  A  mesoporous  Pdop-based  theranostic  agent
that is superparamagnetic iron oxide coated with Pdop, mod-
ified with a targeted molecule of sialic acid and chelated with
Fe3+ for  T1/T2  dual  MRI-guided  cancer  chemo-photothermal
therapy  has  been  developed.[60] The  theranostic  agent

demonstrated  excellent  photothermal  conversion  capability
and  photostability,  which  could  effectively  encapsulate  the
Dox for its dual pH- and thermal-triggered release.

The  combination  of  active  tumor-targeting  biomolecules
with  Pdop-based PCMs could  result  in  more  effective  cancer
PTT. Folic acid has been shown to bind to overexpressed folic
acid receptors on many types of tumors, making it a potential
targeting agent.[61−63] Pdop nanoparticles functionalized with
folic acid and responsive to tumor acidity and NIR have been
developed  for  co-delivery  of  Dox  and  epigallocatechin-3-
gallate  (Fig.  9).[64] The  pH  sensitivity  and  photothermal  con-
version  capability  of  Pdop  incorporated  within  the  obtained
materials  enabled  an  increased  drug  release  upon  exposure
to  exogenous  NIR  irradiation  and  a  lower  pH,  thus  reducing
the adverse effects of the drugs on healthy organs. Thanks to
NIR, the cellular uptake of these drug delivery systems is signi-
ficantly higher when compared with the free Dox group and
the control group without NIR irradiation. Folic acid-function-
alized Pdop-based nanomedicine has been found to improve
the  therapeutic  activity  of  cinobufagin  against  cancer  cells,
most likely due to an increased targeting and accumulation of
the  compound  at  the  site  of  the  tumor.[65] Nanomedicine  in
combination  with  photothermal  therapy  exhibited  an  im-
proved therapeutic effect against lung cancer. By loading the

A

B C

 
Fig.  6    (A)  Schematic  illustration  for  the  preparation  of  NRGO-GNS@Dox  nanocomposite  for  combined  photothermal  and
chemotherapy  of  breast  cancer,  (B)  temperature  elevation  of  PBS,  NRGO,  GNS,  NRGO-GNS,  and  NRGO-GNS@DOX  suspensions  (280
μg·mL−1),  and (C)  concentration-dependent of  NRGO-GNS@DOX aqueous suspension upon laser irradiation (4.0 W·cm−2).  (Reproduced
with permission from Ref. [44]; Copyright (2016) WILEY-VCH).
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photosensitizer  Ce6  onto  mesoporous  MnO2 nanoparticles
and coating them with folic acid-functionalized Pdop, a plat-
form for  photonic  therapy is  created.[66] The core-shell  struc-
ture of MnO2/Pdop enables efficient conversion of NIR light to
heat. The use of a combination of O2-strengthened Pdop and
PTT resulted in effective tumor growth inhibition upon expos-
ure to 660 and 808 nm lasers.

Pdop-based PCMs for Imaging-guided PTT
Thanks  to  the  strong  adhesion  and  metal-chelating  ability  of
Pdop,  Pdop-based magnetic  resonance imaging (MRI)  contrast
agents  that  integrate  imaging  function  with  enhanced
biocompatibility  and  PTT  have  been  developed.  Pdop-
encapsulated  gadolinium-loaded  multi-walled  carbon
nanotube (MWCNT-Gd@PDA) were designed for  dual-modality
mapping  guided  PTT  by  positive  signal  of  MRI  as  well  as  the

black of the nanomaterials providing visual information.[67] The
presence  of  a  Pdop  shell  prevented  gadolinium  ion  from
escaping  from  the  MWCNT,  eliminating  potential  for  inherent
biological  toxicity.  Both in  vitro and in  vivo results  showed that
this  nanosystem  possessed  precise  spatial-temporal  selectivity
in  comparison  with  conventional  surgery  and  T2-MRI  guided
PTT.  Gadolinium-functionalized  nanocomposites  were
fabricated  by  encapsulating  Fe3O4 nanoparticles  in  Pdop,  and
then  chelating  gadolinium  onto  their  surface.[68] These
nanocomposites  exhibited  excellent  photothermal  conversion
efficiency  and  were  able  to  induce  significant  contrast
enhancement  for  both  T1  and  T2  imaging  at  very  low
concentrations of Gd and Fe, providing a promising platform for
the  development  of  novel  diagnostic  and  therapeutic  agents.
Zhang et  al.  investigated  the  use  of  multifunctional  Mn2+

complex-modified  Pdop  and  dual  emissive  carbon  dots-based

A

B

 
Fig. 7    (A) Schematic presentation of the fabrication of PDA-Pt NPs through supramolecular self-assembly, (B) infrared thermal images
of PDA-Pt NPs solutions with different concentrations under NIR laser irradiation. (Reproduced with permission from Ref. [48]; Copyright
(2021) Elsevier).

A B C

 
Fig. 8    Typical TEM image of (A) solid (Reproduced with permission from Ref.  [54];  Copyright (2013) WILEY-VCH) and (B) mesoporous
(Reproduced with permission from Ref. [56]; Copyright (2017) The Royal Society of Chemistry) Pdop nanoparticles, and STEM of (C) Pdop
hollow spheres (Reproduced with permission from Ref. [57]; Copyright (2011) WILEY-VCH).
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nanoparticles  for  trimodality  fluorescent,  PTT  and  MRI in  vitro
and in  vivo (Fig.  10).[69] These  multifunctional  nanoparticles
exhibited  green  and  red  dual  emission,  high  stability,  and
excellent  photothermal  effects  (photothermal  conversion
efficiency  of  28.2%).  Core/shell  nanocomplexes  composed  of
Ce6-embedded mesoporous silica nanoparticle cores and Pdop
and  manganese  ion  shells  improve  MRI  contrast  effect  with
promising  photothermal  conversion  efficacy.[70] In  vitro and in
vivo results  demonstrated  that  the  prepared  nanocomplexes
would be a promising potential for multimodal imaging-guided
phototherapy.  Multifunctional mesoporous Pdop nanoparticles
loaded with glucose oxidase, Fe ions, and Pt nanoparticles have
been  demonstrated  for  synergistic  cancer  therapy.[71] The  heat

generated  by  Pdop  under  laser  irradiation  enhances  the
chemodynamic  therapy  (CDT)  effect,  providing  a  novel  MRI-
guided  PTT-enhanced  CDT  synergistic  nanomedicine  platform
for cancer therapy.

Pdop-based Hydrogel for Enhanced PTT
Hydrogel-based drug delivery systems provide a high-dose and
constant  release  of  therapeutic  agents  in  pathological  lesions
and  can  avoid  non-specific  drug  distribution  in  heathy  tissues,
which  can significantly  reduce the  adverse  effect  of  drugs  and
enhance  their  bioavailability.[72] Pdop  can  serve  as  either  a
chemical  or  physical  crosslinker  for  polymer  networks,
depending on the formation of chemical bond and noncovalent
interaction,  respectively.  A  Pdop  nanoparticle-knotted

 
Fig. 9    Schematic illustration of DOX-EGCG/DPA-FA NPs mediated pH and NIR-controlled chemo-photothermal therapy. (Reproduced
with permission from Ref. [64]; Copyright (2021) WILEY-VCH).

 
Fig.  10    Schematic  illustration  of  the  synthetic  procedure  and  action  mechanism  of  PDA@N-CDs(Mn)  NPs  and  their  application  in
fluorescent, photothermal, and magnetic resonance imaging. (Reproduced with permission from Ref. [69]; Copyright (2019) Elsevier).
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poly(ethylene  glycol)  (PEG)  hydrogel  for  on-demand  drug
delivery  and  combined  chemo-photothermal  therapy  was
designed  and  prepared,  due  to  improved  bioavailability,  and
minimized  adverse  effects  of  hydrogel  (Fig.  11).[73] 7-Ethyl-10-
hydroxycamptothecin  (SN38),  an  anticancer  drug,  was  loaded
on  Pdop  NPs via π-π interaction,  exhibited  minimal  leakage  at
physiological  conditions and could be released upon exposure
to NIR laser. In vivo results have demonstrated that the resulting
hydrogel can efficiently suppress tumor growth by a combined
chemo-photothermal  therapy.  A  versatile  hydrogel  loading
photothermal  agents,  chemotherapeutics,  and  immune-
adjuvants  have  been  reported  to  eradicate  orthotopic  tumors
and  inhibit  metastasis  by  combinational  therapy.[74] Pdop
crosslinks  with  thiolated  hyaluronic  acid via thiol-Michael
addition,  endowing  the  resulting  hydrogel  with  excellent
photothermal  property.  The  combination  of  Dox  and  an
immune-adjuvant,  CpG-ODN  in  a  hydrogel  results  in  a
synergistic  effect  that  includes  effective  chemotherapy  and  an
evoked  host  immune  response.  A  polyacrylamide/phytic
acid/Pdop  multi-component  hydrogel  was  prepared  by

copolymerizing  dopamine  with  acrylamide  through  a  phytic
acid crosslinker.[75] Due to the porous structure of  the network
and the strong NIR-absorption of Pdop, the hydrogel exhibits a
high  Dox-loading  capacity  (170  mg·g−1)  and  efficient
photothermal  transduction  efficiency  (47.4%)  even  under  0.75
W·cm−2 of  808  nm  NIR  laser  irradiation.  To  achieve  effective
antitumor  efficacy  at  relatively  low  temperature,  the  siRNA-
embedded  nanogels  are  coated  with  Pdop  which  not  only
protects  the  nanogels  against  enzymatic  degradation  but  also
endows  the  nanogels  with  excellent  photothermal  conversion
capacity under NIR light irradiation.[76] After surface PEGylation,
this triple shield siRNA delivery complex is capable of effectively
ablating tumors under relatively mild conditions.

Polymer-modified Pdop-based PCMs for Enhanced
PTT
Modifying  biomaterials  with  functionalized  polymers  can
significantly  affect  the  properties  of  the  complexes,  leading  to
improved  bioavailability,  biocompatibility,  and  anticancer
properties.[77−79] Several  noncovalent interactions play a crucial
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Fig. 11    Preparation and characterization of the PDA-knotted PEG hydrogel. (A) Preparation of PDA/PEG hydrogel. PDANPs were used
as a cross-linking agent to cross-link 4-arm-PEG-SH. (B) Fabrication of a star-shaped PDA/PEG hydrogel.  (C,  D) SEM images of PDA/PEG
hydrogel. (E) Dynamic G′ and G″ moduli of PDA/PEG hydrogel. The mixture of 4-arm-PEG-SH and PDANPs was blended by a Vortex mixer
for  10 min.  After  that,  the rheology of  the mixture was measured by a  hybrid rheometer.  (F)  The shear-thinning behavior  of  PDA/PEG
hydrogel. (G) Photothermal effect of PDA/PEG hydrogel irradiated with NIR light at 3.6 W·cm–2 for 10 min. (Reproduced with permission
from Ref. [73]; Copyright (2021) American Chemical Society).
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role  in  the  construction  of  polymer-modified  Pdop
nanomaterials,  including hydrogen bonds, π-π stacking, charge
transfer,  and  hydrophobic  interactions.  A  pH-  and  NIR  light-
responsive drug delivery system has been developed to target
tumors by electrostatically adsorbing hyaluronic acid (HA) onto
the  nanoparticle  surface.[80] The  nanomedicine  showed
synergistic  effects  against  tumors  through  chemotherapy  and
photothermal therapy in both in vitro and in vivo studies. Pdop
and  HA-coated  liquid  perfluorocarbon  nanoparticles  were
prepared to  take advantage of  good photothermal  conversion
effect  of  Pdop,  the ultrasound imaging properties of  the liquid
fluorocarbon, and the active tumor-targeting of HA (Fig. 12).[81]

Pdop  has  been  shown  to  effectively  convert  NIR  laser  energy
into heat for PTT, which can induce a phase change of the liquid
perfluorocarbon,  generating  microbubbles,  enhancing
ultrasound imaging signals, and promoting drug release.

Pdop  has  numerous  functional  groups  that  can  act  as  an-
chor points to form covalent bonds with functional polymers
via Schiff  base  reactions  or/and  Michael  addition
reactions.[82−84] Thus,  Pdop-based  materials  could  be  further
modified  with  biopolymers  though  “grafting  on”  or  “grating
from”  strategies.  Inspired  by  the  simple  and  low-cost  “graft-
ing on” approaches, various polymer-modified Pdop nanoma-
terials  have  been  demonstrated.  The  fabrication  of  camp-
tothecin-containing  polymeric  prodrugs  was  achieved  by
polymerizing  a  pH-sensitive  related  comonomer via rever-
sible addition-fragmentation transfer (RAFT).[85] The pH-sensi-
tive  polymeric  prodrug  was  attached  to  the  surface  of  the
Pdop nanoparticles through amidation chemistry for combin-
ation  of  chemotherapy  with  photothermal  therapy.  Pdop-
coated  lanthanide-based  nanocomposites  have  been  suc-
cessfully  constructed  and  functionalized  with  PEG  and  folic
acid  for  early  diagnosis  and treatment  of  tumors  (Fig.  13).[86]

The  nanocomposites  could  be  effectively  triggered  by  808

nm  laser  irradiation  to  produce  an  excellent  photothermal
conversion efficiency of 32.3%, due to the strong NIR absorp-
tion  of  Pdop.  Nanocomplexes  (PPy-PDA-PEG@DOX),  consist-
ing of a polypyrrole core, a Pdop shell, PEG linkages, and Dox,
were  designed  to  enhance  PTT  against  cancer  cells  in  NIR
range.[87] The nanocomplex demonstrated good phototherm-
al stability and conversion efficiencies of 23.1% and 30.8% in
the  NIR-I  and  II  biowindows,  respectively.  A  targeted  ther-
anostic  nanoplatform  has  been  fabricated  though  the  modi-
fication  of  Pdop-coated  LAPONITE®-Fe3O4 nanoparticles  with
PEGylated  phenylboronic  acid via Michael  addition.[88] The
nanoplatforms displayed excellent biocompatibility and pho-
tothermal  conversion  efficiency  under  NIR  laser  irradiation,
making them ideal for use in MRI and photoacoustic imaging-
guided  cancer  cell  PTT.  PEGylated  PPy@Fe3+-chelated  Pdop
nanocomposites with a uniform core-shell structure were de-
signed  and  prepared.[89] The  cores  of  PPy  and  Pdop  contri-
bute  to  the  photothermal  ablation  of  tumors,  while  the  PEG
shells  provide  the  nanoparticles  with  good  biocompatibility
and  MRI  signal-enhancing  ability.  Spherical  Pdop/mesopor-
ous calcium phosphate hollow Janus nanoparticles have been
reported  and  further  functionalized  with  indocyanine  green
(ICG), methoxy-poly(ethylene glycol)thiol and Dox.[90] The res-
ultant  nanoparticles  possess  excellent  biocompatibility,  a
competent  drug  loading  capability,  high  photothermal  con-
version  efficiency,  and  pH/NIR  dual-responsive  properties,
providing  photoacoustic  imaging-guided  synergistic  cancer
chemo-phototherapy in  vitro and in  vivo.  Multifunctional
nanotheranostics  for  MRI  guided  combinatorial  chemother-
apy  and  PTT  for  cancer  have  been  designed  and  construc-
ted.[91] Biamino polyethylene glycol was modified on the sur-
face  of  Mn3O4@Pdop  for  further  conjugation  with  folic  acid,
improving  the  ability  to  target  tumors  and  the  stability  in
physiological  conditions.  Upon  808  nm  NIR  laser  irradiation,

 
Fig.  12    Design  of  core-shell  Doc-PFH@SL@PD-HA  for  ultrasound  imaging-guided  photothermal-chemotherapy.  (Reproduced  with
permission from Ref. [81]; Copyright (2019) The Royal Society of Chemistry).
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nanotheranostics exhibits high therapeutic efficiency and low
side  effects  of  drugs,  providing  highly  effective  MRI  guided
synergetic  chemo-/photothermal  therapy  for  cancer  treat-
ment. The biocompatibility of IR820 was improved by encap-
sulating with Pdop under alkaline conditions and then modi-
fying  with  methoxy  polyethylene  glycol  amine via Michael
addition,  leading  to  the  fabrication  of  an  agent  with  en-
hanced photothermal properties.[92]

Surface-initiated  polymerizations  are  an  attractive  “graft-
ing from” method for creating well-defined polymer brushes
with  complex  architectures  on  Pdop  nanoparticles.[38,93−96]

Zhang et  al. developed  a  Pdop-based  multifunctional  re-
agent  consisting of  europium(III)  complexes  which was  graf-
ted from the surface by surface-initiated atom transfer radical
polymerization  (Fig.  14).[97] The  nanocomplexes  exhibited
both bright X-ray CT and photoluminescence dual-mode ima-
ging efficiency and an excellent PTT effect both in vivo and in

vitro.  The  modification  of  Pdop  coated  silica  nanoparticles
with  poly(N,N-diethylacrylamide)  was  carried  out  by
SIATRP.[98] The  resulting  product  exhibited  a  strong  near-
infrared  photothermal  effect  and  facilitated  the  loaded  Dox
release.

CONCLUSIONS AND PERSPECTIVE

Generally,  inorganic  PCMs  are  poorly  biometabolized,  while
organic  materials  could  have  potential  problems  with  leakage
and  toxicity  of  degradation  products  during  their  long-term
retention.  It  is  believed that  there is  still  considerable potential
for  improvement  in  the  synthesis  and  properties  of  PCMs.
Thanks  to  the  adhesion  and  secondary  reactivity  of  Pdop,
numerous  Pdop-based  PCMS  have  been  developed  with
excellent  photothermal  conversion  and  combined  with  other
theranostics to enhance therapeutic efficacy.  In this review, we

 
Fig.  13    Schematic  illustration  of  the  preparation  of  NaGdF4:Dy@PPF  as  a  theranostic  agent  for  trimodal  imaging-guided  PTT.
(Reproduced with permission from Ref. [86]; Copyright (2019) The Royal Society of Chemistry).

 
Fig. 14    Design and synthesize schematic illustration of FEDA nanoparticles for multifunctional photothermal agent. (Reproduced with
permission from Ref. [97]; Copyright (2021) American Chemical Society).
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highlight  the  recent  advances  in  versatile  Pdop  platforms  for
PTT. By using a template and porogen, the morphology of Pdop
nanoparticles can be controlled to form solid, mesoporous, and
hollow  structures  with  an  excellent  photothermal  conversion
efficiency.  Thanks to the adhesion nature,  Pdop can be coated
on  bulk  substrates  to  improve  their  bioavailability  and
biocompatibility, which can be further enhanced by combining
with  functional  nanomaterials  and/or  biomolecules.  The
presence  of  functional  groups  (amino  and  catechol)  on  Pdop
endows  it  with  secondary  reactivity,  making  it  useful  for
functionalization  as  anchor  points.  Pdop-containing  substrates
could  not  be  only  conjugated  with  small  biomolecules via
covalent  bonds  and/or  noncovalent  interaction  but  also
decorated  with  polymers via either  the  “grafting  to”  or
“grafting from” method. The transition from basic research to
clinical  applications  has  traditionally  been  lengthy  and
complex, but it is reasonable to believe that the development
of  Pdop-based  PCMs  can  help  to  expedite  and  improve  the
progress of tumor theranostic methodology.
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